Wahrscheinlichkeitesrechnung – Grundstein für Predictive Analytics

Die Wahrscheinlichkeitsrechnung behandelt die Gesetzmäßigkeiten  des (von außen betrachtet) zufälligen Vorkommens bestimmter Ereignisse aus einer vorgegebenen Ereignismenge. Die mathematische Statistik fasst diese Wahrscheinlichkeitsrechnung zur Stochastik zusammen, der Mathematik des Zufalls

Mit diesem Artikel – zu der ich eine Serie plane – möchte ich den Einstieg in Predictive Analytics wagen, zugegebenermaßen ein Themengebiet, in dem man sich sehr schnell verlieren und den Wald vor lauter Bäumen nicht mehr findet. Also belassen wir es erstmal bei einem sanften Einstieg…

Klassische Definition der Wahrscheinlichkeit

Das klassische Verständnis der Wahrscheinlichkeit geht von endlich vielen Ausgängen (Ereignisse) aus, bei denen alle Ausgänge gleich wahrscheinlich sind. Die dafür erdachten Zufallsexperimente wurden von dem französischen Mathematiker Pierre Simon Lapplace (1749 – 1827) zum ersten Mal nachvollziehbar beschrieben. Diese Zufallsexperimente werden daher auch Laplace-Experimente genannt.

Bei einem Laplace Experiment gilt:

Ereignismenge \Omega = {\omega_1,\omega_2,\omega_3,…\omega_s}
Wahrscheinlichkeit p(w_j)=\frac{1}{s}=\frac{1}{|\Omega|}
(j=1,2,3,…s)

Die Ergebnismenge, das ist die Menge aller möglichen Ereignisse, wird in der Regel mit einem \Omega (Omega) gekennzeichnet, ein beliebiges Einzelereignis hingegen als \omega (kleines Omega).

Eine typische Laplace-Wahrscheinlichkeitsfrage ist ein bevorstehender Würfelwurf. Wie groß ist die Wahrscheinlichkeit, mit einem echten (unverfälschten) Würfel eine gerade Zahl zu würfeln?

Mit \Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=\frac{|A|}{|\Omega|}=\frac{3}{6}=0,5.

Axiomatische Definition der Wahrscheinlichkeit

Jeder Wahrscheinlichkeitsbegriff muss auf denselben äußeren Bedingungen beruhenden Zufallsexperimenten beliebig oft wiederholbar sein. Die axiomatische Definition der Wahrscheinlichkeit P(A) eines Ereignisses A berücksichtigt Axiome. Axiome sind nicht beweisbare Grundpostulate, darunter fallen Gegebenheiten, die gewissermaßen unverstanden sind und deren Vorkommen und Bedeutung in der Regel empirisch belegt werden müssen.
Die Definition der axiomatischen Wahrscheinlichkeit stammt vom russischen Mathematiker Andrej Nikollajewitsch Kolmogorov (1903 – 1987).

In der Realität gibt es keine perfekte Zufälligkeit, denn jedes Ergebnis ist von ganz bestimmten Faktoren abhängig. Auf den Würfelwurf bezogen, hängt das gewürfelte Ergebnis von unüberschaubar vielen Faktoren ab. Wären diese alle bekannt, könnte das Ergebnis exakt berechnet und somit mit einer Sicherheit vorhergesagt werden. Da dafür jedoch in der Praxis unbestimmbar viele Faktoren eine Rolle spielen (beispielsweise die genaue Beschaffenheit des Würfels in Form, Gewicht, Materialwiderstand, der genaue Winkel, die Fallgeschwindigkeit, die Ausgangsposition der Hand und des Würfels) können wir das Ergebnis nur schätzen, indem die Beschreibung des Vorgangs vereinfacht wird. Nur diese Vereinfachung macht es uns möglich, Vorhersagen zu treffen, die dann jedoch nur eine Wahrscheinlichkeit darstellen und somit mit einer Unsicherheit verbunden sind.

In der abstrakten Welt des perfekten Zufalls gäbe es die gleiche Chance, eine “4” zu würfeln, wie jeweils alle anderen Ziffern.

Mit \Omega={1,2,3,4,5,6} und A={4} folgt P(A)=\frac{|A|}{|\Omega|}=\frac{1}{6}=0,167.

Das Ergebnis eines Wurfes des Würfels ist in der Realität auch von der Beschaffenheit des Würfels abhängig. Angenommen, der Würfel hat auf Seite der Ziffer “4” bei allen vier Kanten eine Abrundung, die ein Umkippen auf eine andere Seite begünstigen, so bedeutet dies:

  • Die Ziffer “4” hat vier abgerundete Kanten, die Wahrscheinlichkeit eine “4” zu würfeln sinkt stark
  • Die Ziffern “1”, “3”, “5”, “6” haben jeweils eine abgerundete Kante (Berühungskante zur “4”) sinkt
  • Die Ziffer “2” liegt der “4” gegenüber, hat somit keine Berührungskante und keine Abrundung, so steigt ihre Chance gewürfelt zu werden

Nun könnte sich nach einer empirischen Untersuchung mit einer ausreichenden Stichprobe folgende Wahrscheinlichkeit ergeben:

  • p(4) = 0,1
  • p(1) = p(3) = p(5) = p(6) = 0,15
  • p(2) = 0,3
  • P(\Omega) = 1,0

Durch die Analyse der bisherigen Wurf-Historie und der Betrachtung der Beschaffenheit der Kanten des Würfels können wir uns somit weit realistischere Wahrscheinlichkeiten über die Wurfergebnisse ermitteln. Wie hoch wäre nun die Wahrscheinlichkeit, nach einem Wurf eine gerade Zahl zu würfeln?

Mit \Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=p(2)+p(4)+p(6)=0,55.

About Author

6 replies
  1. Silvia
    Silvia says:

    Awesome blog! Do you have any suggestions for aspiring writers?
    I’m hoping to start my own blog soon but I’m a little lost on everything.
    Would you suggest starting with a free platform like WordPress or
    go for a paid option? There are so many choices out there that I’m totally confused ..

    Any recommendations? Thank you!

    Reply

Trackbacks & Pingbacks

  1. […] (also Wahrscheinlichkeit 1/6 = 0,17)? Die Binominalverteilung verrät es Ihnen, ausgehend von der klassischen Wahrscheinlichkeitsbetrachtung (also Wahrscheinlichkeit 1/6 = […]

  2. […] (also Wahrscheinlichkeit 1/6 = 0,17)? Die Binominalverteilung verrät es Ihnen, ausgehend von der klassischen Wahrscheinlichkeitsbetrachtung (also Wahrscheinlichkeit 1/6 = […]

  3. […] nicht aufeinander aufbauend, sondern mehr oder weniger gleichberechtigt in ihrem Auftrauen. Bei der klassischen und axiomatischen Wahrscheinlichkeit kommen wir damit also nicht ans […]

  4. […] nicht aufeinander aufbauend, sondern mehr oder weniger gleichberechtigt in ihrem Auftrauen. Bei der klassischen und axiomatischen Wahrscheinlichkeit kommen wir damit also nicht ans […]

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

10683 Views